How to find the least upper bound on the van der Waerden Number $W(r, k)$ that is some integer Power of the coloring Integer $r$

نویسنده

  • Robert J. Betts
چکیده

What is a least integer upper bound on van der Waerden number W (r, k) among the powers of the integer r? We show how this can be found by expanding the integer W (r, k) into powers of r. Doing this enables us to find both a least upper bound and a greatest lower bound on W (r, k) that are some powers of r and where the greatest lower bound is equal to or smaller than W (r, k). A finite series expansion of each W (r, k) into integer powers of r then helps us to find also a greatest real lower bound on any k for which a conjecture posed by R. Graham is true, following immediately as a particular case of the overall result.12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Use of Cyclic Zippers in Finding Lower Bounds for van der Waerden Numbers

For integers k and l, each greater than 1, suppose that p is a prime with p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the integer segment [0, p− 1] that admits no monochromatic occurrence of l consecutive members of an arithmetic progression. Such a coloring can lead to a coloring of [0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, ca...

متن کامل

Bounds on some van der Waerden numbers

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this l...

متن کامل

Bounds on Van Der Waerden Numbers and Some Related Functions

For positive integers s and k1, k2, . . . , ks, let w(k1, k2, . . . , ks) be the minimum integer n such that any s-coloring {1, 2, . . . , n} → {1, 2, . . . , s} admits a ki-term arithmetic progression of color i for some i, 1 ≤ i ≤ s. In the case when k1 = k2 = · · · = ks = k we simply write w(k; s). That such a minimum integer exists follows from van der Waerden’s theorem on arithmetic progre...

متن کامل

Ramsey functions for quasi-progressions with large diameter

Several renowned open conjectures in combinatorics and number theory involve arithmetic progressions. Van der Waerden famously proved in 1927 that for each positive integer k there exists a least positive integer w(k) such that any 2-coloring of 1, . . . , w(k) produces a monochromatic k-term arithmetic progression. The best known upper bound for w(k) is due to Gowers and is quite large. Ron Gr...

متن کامل

Arithmetic Progressions in Sequences with Bounded Gaps

Let G(k;r) denote the smallest positive integer g such that if 1 = a1;a2; : : : ;ag is a strictly increasing sequence of integers with bounded gaps a j+1 a j r, 1 j g 1, then fa1;a2; : : : ;agg contains a k-term arithmetic progression. It is shown that G(k;2) > q k 1 2 4 3 k 1 2 , G(k;3) > 2 k 2 ek (1+ o(1)), G(k;2r 1)> r k 2 ek (1+o(1)), r 2. For positive integers k, r, the van der Waerden num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.03631  شماره 

صفحات  -

تاریخ انتشار 2015